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ACTIVE CONTROL OF VIBRATION
TRANSMISSION IN A CYLINDRICAL SHELL
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(Received 11 July 1995, and in final form 30 September 1996)

The theoretical analysis of active control of harmonic power transmission in a
semi-infinite cylinder using a circumferential array of control forces and a circumferential
array of error sensors is considered, and the extent of control which is achievable for a
realistic control force configuration is examined.

The model considered is a semi-infinite cylinder, simply supported at one end,
anechoically terminated at the other end and excited harmonically by an array of in-phase
primary forces arranged in a line around its circumference. Control is achieved by an array
of independent control forces applied downstream from the primary forces. For three or
more control forces it is possible to achieve a power transmission reduction of 30 dB for
both acceleration and power transmission cost functions, provided that the error sensors
are in the far field of the primary and control forces.
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1. INTRODUCTION

Active control of structural vibration is a topic which has received considerable attention
in the past and will continue to do so in the future as faster and cheaper electronic
hardware becomes available to implement control configurations. Active control has been
used in the past for minimizing vibration transmission in (one-dimensional) beams and
(two-dimensional) plates. Pan and Hansen have studied active control of vibratory power
transmission in an infinite beam [1], active control of vibration amplitude in a finite beam
[2] and active control of vibratory power transmission in an infinite plate [3, 4].

Flügge [5] described the three-dimensional equations of motion for the vibration of a
cylindrical shell. Leissa [6] carried out a numerical analysis which showed that similar
results were obtained by the use of Flügge’s equations, and the equations of various
authors including Forsberg [7, 8]. Subsequently, Flügge has been recognized as the
pre-eminent author in this field. However, little research has been carried out to test the
validity of Flügge’s equations in practical active vibration control applications. In
particular, it should be noted that Flügge’s model includes a simplifying assumption which
does not take into account the linear inertia of the cylinder, and the assumption can cause
inaccurate results. Thus, Flügge’s model could not be used directly for the active control
applications addressed in this paper. It was necessary to develop a more fundamental
approach to the model, taking account of cylinder inertia. The extension of Flügge’s
equations with the inertia terms included, is considered in this paper.

Recently, attention has been given to the feedforward active control of noise in a cylinder
which represents an aircraft fuselage. However, the research is mainly directed at reducing
the noise radiated from a cylindrical shell or transmitted through it rather than reducing
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vibratory power transmission along it. Fuller and Jones [9] presented an experimental
investigation on the control of interior noise in a cylinder using a single point vibration
control source to reduce noise transmission. Jones and Fuller [10] extended this work to
include more control sources. They showed that significant reduction can be achieved for
harmonic excitation. Elliott et al. [11] demonstrated successful experiments on the control
of the noise field in a cabin of an aircraft, by using acoustic rather than vibration control
sources.

Feedforward active control of vibratory power transmission in a pipe, i.e., a cylinder
with small diameter, has been the subject of increasing attention in recent years. Fuller
and Brevart [12] demonstrated the active control of vibratory power transmission in a pipe
by using point control sources to minimize the acceleration of the shell around its
circumference at several axial locations. However, they considered mainly the low
frequency range (well below the ring frequency) where, based on earlier work by
Pinnington and Briscoe [13], the pipe behaves as a beam. Their method may be difficult
to apply to a cylinder with a large diameter and over a wide frequency range.

Examining the control of vibratory power transmission along a semi-infinite cylinder is
one step along the path towards the development of an active system to control vibratory
power transmission in large cylindrical structures, where the amplitude of the wave
reflected from at least one of the boundaries is negligible compared to that of the original
incident wave.

The work outlined here examines the extent of control of flexural, extensional and
torsional waves which is achievable for a circumferential array of radial control forces on
a semi-infinite cylinder. The cylinder is simply supported at one end, anechoically
terminated at the other end and excited by an array of in-phase harmonic primary radial
forces arranged in a line around its circumference. The total power transmission reduction
is calculated for different wave type acceleration and different wave type power
transmission cost functions. In addition, the effect of error sensor type and location,
control force type and location, cylinder thickness, radius and excitation frequency is
investigated and discussed in detail. As it is difficult to measure power transmission in
practice, it is of interest to examine theoretically the effectiveness of minimizing
acceleration at the error sensors to reduce power transmission. This is done for a number
of error sensor configurations.

2. ACTIVE CONTROL OF ACCELERATION

For active control of structural vibration, the two fundamental approaches are
acceleration control and power transmission control. The former is considered in this
section, while the latter is discussed in section 4.

Figure 1. A cylinder with excitation F at location (x0, f0).
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Figure 2. Sign conventionns for forces and moments (conventions for forces and moments in the f-plane are
similar).

The geometry of the cylinder and co-ordinates are shown in Figure 1, and the sign
conventions are shown in Figure 2. The analysis described here is based on point forces
and sensors, which can be approximated very well by using electrodynamic shakers and
accelerometers [14]. It should be noted that strain sensors and actuators can also be applied
using a similar but modified analysis to that described in this paper [15, 16].

2.1.        -  

If the cylinder is excited by an array of in-phase radial primary forces of complex
amplitude Fp located at x= xp , the flexural displacement w(x, f) at any location (x, f)
is discussed in Appendix A and is found by using equation (A48) in Appendix A as follows:

w(x, f)=Fpwp− f(x, f). (1)

Similarly, if an array of radial control forces of complex amplitude Fc are placed at x= xc ,
the flexural displacement due to this acting alone is

w(x, f)=Fcwc− f(x, f). (2)

The total flexural displacement response at location (x, f) due to the primary and control
forces acting together is then

w(x, f)=Fpwp− f(x, f)+Fcwc− f(x, f). (3)

The optimal control force Fc for minimizing the flexural acceleration (and the flexural
displacement for a single excitation frequency) around the circumference of the cylinder
at a constant axial location x may be found by integrating the sum of the squares of the
flexural displacement defined in equation (3) around the circumference of the cylinder, and
setting the partial derivatives of the integration with respect to the real and imaginary
components of the control force equal to zero. The partial derivatives are

1 g
2p

0

=w=2 df

1 Frel
=g

2p

0

(Fpwp− fw*c− f +F*p w*p− fwc− f +2Frel =wc− f =2) df (4)

and

1 g
2p

0

=w=2 df

1 Fimg
=g

2p

0

(−jFpwp− fw*c− f +jFpw*p− fwc− f +2Fimg =wc− f =2) df (5)

respectively, where Fc =Frel +jFimg and the superscript asterisk represents the complex
conjugate. The physical significance of equations (4) and (5) is that the minimum in the
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displacement as a function of the real and imaginary parts of the force occurs when the
slope of the function is zero. The result is

Fc =−Fp

g
2p

0

wp− fw*c− f df

g
2p

0

=wc− f =2 df

. (6)

The axial and circumferential displacement due to the radial primary and radial control
forces are

u(x, f)=Fpup− f(x, f)+Fcuc− f(x, f) (7)

and

v(x, f)=Fpvp− f(x, f)+Fcvc− f(x, f) (8)

respectively.

2.2.         

  

If the cylinder is driven by an array of in-phase radial primary point forces around one
circumference of the cylinder at x= xp and three independent radial control point forces
around the other circumference at x= xc , the total radial displacement response may be
written as

w=wp +wc =Fpwp− f +Fc1wc− f1 +Fc2wc− f2 +Fc3wc− f3. (9)

The quantities wc− f1, wc− f2 and wc− f3 are each calculated in a similar way to wc− f

in Appendix A. The optimal control forces for minimizing the flexural acceleration
or displacement at any axial location x may be found by integrating the sum of the
squares of the flexural displacement defined in equation (9) around the circumference
of the cylinder and setting the partial derivatives of the integration with respect
to each of the real and imaginary components of the control forces equal to zero.
The result is an optimal set of control forces as follows:

Fc1 g
2p

0

=wc− f1=2 df g
2p

0

w*c− f1wc− f2 df g
2p

0

w*c− f1wc− f3 df
−1

Fc2 =− g
2p

0

wc− f1w*c− f2 df g
2p

0

=wc− f2=2 df g
2p

0

w*c− f2wc− f3 dfG
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l
Fc3 g

2p

0

wc− f1w*c− f3 df g
2p

0

wc− f2w*c− f3 df g
2p

0

=wc− f3=2 df
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g
2p

0

wp− fw*c− f1 df

G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

× g
2p

0

wp− fw*c− f2 df Fp . (10)

g
2p

0

wp− fw*c− f3 df

The procedure can be extended to any number of independently controlled forces.

3. POWER TRANSMISSION PAST THE ERROR SENSORS

The vibratory power transmission is a result of three wave motions, and is given by
Fuller [17], as

Ps =Pf +Pe +Pt , (11)

where the subscript refers to the shell motion; i.e., either flexure, extension or torsion
respectively. The quantity Pf consists of two parts contributed by rotation of the cylindrical
element as well as radial flexure. Thus

Pf =
1
T g

T

0 g
2p

0 $Mx
1ux

1t
+Qx

1w
1t%r df dt, (12)

Pe =
1
T g

T

0 g
2p

0

Nx
1u
1t

r df dt (13)

and

Pt =
1
T g

T

0 g
2p

0

Nxf

1v
1t

r df dt, (14)

where T is the period of vibration and ux is angular rotation of the cylindrical element
about the f-axis. Substituting equations (12), (13) and (14) into equation (11), equation
(11) can be written as

Ps =
1
T g

T

0 g
2p

0 $Mx
1ux

1t
+Qx

1w
1t

+Nx
1u
1t

+Nxf

1v
1t%r df dt. (15)

Adopting the approach of Skudrzyk [18], the real (or active) part of the power transmission
along the cylinder for harmonic excitation is calculated as the product of the real part of
the force term with the real part of the velocity term for each pair of terms in equation
(15) and the result is time averaged. Thus the active power transmission is given by

Ps =
r
2 g

2p

0

Re $Mx
1u*x
1t

+Qx
1w*
1t

+Nx
1u*
1t

+Nxf

1v*
1t % df (16)
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where, according to Flügge [5], the bending moment about the f-axis is as shown in
equation (A26), the axial force is given by

Nx =
De

r
(u'+ nv·+ nw)−

K
r3 w0, (17)

where De =Eh/(1− n2), and K=Eh3/[12(1− n2)], the circumferential shear force is given
by

Nxf =
De

r
1− n

2
(u·+ v')+

K
r3

1− n

2
(v'−w'·) (18)

and the transverse shear force is given by

Qx =
K
r3 [(w1+ nw'··− u0− nv'·)+ (1− n)(w'··+ 1

2u··− 1
2v'·)]. (19)

For one line of primary actuators around one circumference of the cylinder and a second
line of control actuators around the other, the resulting total power transmission along
the cylinder can be expressed in terms of the primary and control forces, using
superposition. Thus the power transmission corresponding to equation (6) (representing
optimal control of flexural acceleration) is obtained by substituting equation (6) into
equations (3), (7) and (8), then into equations (A26) and (17)–(19), and the results into
equation (16). The power transmission corresponding to equation (10) can be obtained in
a similar way.

4. ACTIVE CONTROL OF VIBRATORY POWER TRANSMISSION

4.1.         -

  

The power transmission resulting from a line of in-phase radial primary forces and a
line of in-phase radial control forces acting together can be found by substituting equations
(3), (7) and (8) into (A26) and (17)–(19) and the results into equation (16). Carrying out
the indicated substitutions in equations (A26) and (17)–(19) gives the following expressions
for the bending moment, axial force, circumferential force and transverse shear force
respectively.

Mx =
K
r2 $0Fp

12wp− f

1x2 +Fc
12wc− f

1x2 1+ n0Fp
12wp− f

1f2 +Fc
12wc− f

1f2 1
−0Fp

1up− f

1x
+Fc

1uc− f

1x 1− n0Fp
1vp− f

1f
+Fc

1vc− f

1f 1%, (20)

Nx =
De

r $0Fp
1up− f

1x
+Fc

1uc− f

1x 1+ n0Fp
1vp− f

1f
+Fc

1vc− f

1f 1
+ n(Fpwp− f +Fcwc− f)%−

K
r3 0Fp

12wp− f

1x2 +Fc
12wc− f

1x2 1, (21)

Nxf =
De

r
1− n

2 $0Fp
1up− f

1f
+Fc

1uc− f

1f 1+0Fp
1vp− f

1x
+Fc

1vc− f

1x 1
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×
K
r3

1− n

2 $0Fp
1vp− f

1x
+Fc

1vc− f

1x 1−0Fp
12wp− f

1x1f
+Fc

12wc− f

1x1f % "22#

and

Qx =
K
r3 6$0Fp

13wp− f

1x3 +Fc
13wc− f

1x3 1+ n0Fp
13wp− f

1x 1f2 +Fc
13wc− f

1x 1f21
−0Fp

12up− f

1x2 +Fc
12uc− f

1x2 1− n0Fp
12vp− f

1x 1f
+Fc

12vc− f

1x 1f1%
+(1− n)$0Fp

13wp− f

1x 1f2 +Fc
13wc− f

1x 1f21+
1
2 0Fp

12up− f

1f2 +Fc
12uc− f

1f2 1
−

1
2 0Fp

12vp− f

1x 1f
+Fc

12vc− f

1x 1f1%7. (23)

These and equations (3), (7) and (8) can be substituted into the expression for the power
transmission (equation (16)) through any cylinder cross-section at axial location x to
produce

Pxa =
r
2 g

2p

0

Re [FcF*c A+FcF*p B+FpF*c C+FpF*p D] df (24)

where

A=−
K
r3 012wc− f

1x2 + n
12wc− f

1f2 −
1uc− f

1x
− n

1vc− f

1f 1 12w*c− f

1x 1t

+
K
r3 $13wc− f

1x3 + n
13wc− f

1x 1f2 −
12uc− f

1x2 − n
12vc− f

1x 1f

+(1− n)013wc− f

1x 1f2 +
1
2

12uc− f

1f2 −
1
2

12vc− f

1x 1f1% 1w*c− f

1t

+0De

r
1uc− f

1x
+ n

De

r
1vc− f

1f
+ n

De

r
wc− f −

K
r3

12wc− f

1x2 1 1u*c− f

1t

+0De

r
1− n

2
1uc− f

1f
+

De

r
1− n

2
1vc− f

1x

+
K
r3

1− n

2
1vc− f

1x
−

K
r3

1− n

2
12wc− f

1x 1f1 1v*c− f

1t
. (25)

The expressions for B, C and D are very similar to above expression for A. For example,
to obtain B, replace c by p in the conjugate part of each term; to obtain C, replace c by
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p in the non-conjugate part of each term; and to obtain D, replace c by p in both the
conjugate and non-conjugate part of each term.

The optimal control force corresponding to minimum power transmission is obtained
by determining derivatives of equation (24) with respect to the real and imaginary
components of the control force and setting the derivatives equal to zero. The result is

Fopt
c =

g
2p

0

B* df+g
2p

0

C df

2 g
2p

0

Re [A] df

Fp . (26)

4.2.          

   

For this case, the cylindrical displacement w, u and v obtained from equations (3), (7)
and (8) can be substituted into equations (A26) and (17)–(19). The results from these
equations can then be substituted into equation (16), to give an expression for the total
power transmission. The total power transmission can be written in matrix form as:

Pxa =
r
2 g

2p

0

Re [FH, AF] df, (27)

where

F=[Fp , Fc1, Fc2, Fc3]T (28)

and

A(1, 1) A(1, 2) A(1, 3) A(1, 4)

A(2, 1) A(2, 2) A(2, 3) A(2, 4)
G
G

G

K

k

G
G

G

L

l

A=
A(3, 1) A(3, 2) A(3, 3) A(3, 4)

; (29)

A(4, 1) A(4, 2) A(4, 3) A(4, 4)

and superscript H is the complex conjugate and transpose of a matrix. The coefficients
A(i, j) (i=1, 4, j=1, 4) of matrix A result from the product of terms in equation (16),
each of which contains contributions from the four different force elements of equation
(28). The expressions for A(i, j) (i=1, 4, j=1, 4) are very similar to the above expression
for A in equation (25). There is only one change to the expression in each case. For
example, to obtain A(1, 1), replaced c by p in both the conjugate and non-conjugate parts
of each term; to obtain A(2, 1), replace p by c1 in the non-conjugate part of each term.

An optimal set of control forces corresponding to minimum power transmission is
obtained by determining derivatives of equation (27) with respect to the real and imaginary
components of each control force and setting the derivatives equal to zero. An optimum
set of control forces corresponding to a minimum power transmission due to three
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independent radial control forces is

Fc1

G
G

G

G

G

K

k

Fc2G
G

G

G

G

L

l

=

Fc3

g
2p

0

(A*(2, 2)+A(2, 2)) df g
2p

0

(A*(3, 2)+A(2, 3)) df g
2p

0

(A*(4, 2)+A(2, 4)) df
−1

−G
G

G

G

G

G

G

K

k

g
2p

0

(A*(2, 3)+A(3, 2)) df g
2p

0

(A*(3, 3)+A(3, 3)) df g
2p

0

(A*(4, 3)+A(3, 4)) dfG
G

G

G

G

G

G

L

lg
2p

0

(A*(2, 4)+A(4, 2)) df g
2p

0

(A*(3, 4)+A(4, 3)) df g
2p

0

(A*(4, 4)+A(4, 4)) df

g
2p

0

A*(1, 2) df g
2p

0

A(2, 1) df

×G
G

G

G

G

G

G

F

f

G
G

G

G

G

G

G

K

k

g
2p

0

A*(1, 3) df G
G

G

G

G

G

G

L

l

+G
G

G

G

G

G

G

K

k

g
2p

0

A(3, 1) df G
G

G

G

G

G

G

L

l

G
G

G

G

G

G

G

J

j

Fp . (30)

g
2p

0

A*(1, 4) df g
2p

0

A(4, 1) df

By comparing equations (26) with (30) and (24) with (27), it can be seen that the single
force changes to a force vector when in-phase force control changes to independent force
control. The expression for the power transmission given by equation (27) not only
includes each force term, but also includes coupling force terms, which makes independent
force control much more complex than in-phase force control to analyze.

The procedure can be used for any number of independently controlled forces. For six
control sources, the corresponding (7×1) force matrix is:

Fp

Fc1

Fc2

F=G
G

G

G

G

G

G

K

k

Fc3G
G

G

G

G

G

G

L

l

. (31)

Fc4

Fc5

Fc6
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The analyses shown in sections 2 and 4 are for radial forces. Similar analyses can be applied
to axial and circumferential forces, and also to corresponding acceleration and power
transmission cost functions.

5. NUMERICAL RESULTS

The numerical results presented in this section have been calculated for a steel cylinder
with Young’s modulus E=207 GPa, density r=7700 kg/m3 and Poisson ratio n=0·3.
With the exception of section 5·5, the radius, thickness and excitation frequency are held
constant at r=0·25 m, h=0·003 m and f=510 Hz. One end of the cylinder is assumed
to be terminated anechoically and the other is simply supported. By way of example, the
configuration selected for the numerical analysis included three in-phase primary; i.e.,
excitation, forces and three control forces. This selection was based on experience with
semi-infinite plates, where it was found that three independent control forces gave better
power transmission reduction (when single or three in-phase primary forces are used) than
either single or multiple in-phase control forces. In section 5.5, results are given for varying
radii, thicknesses and excitation frequencies.

5.1.     

The near field of a vibration source of free field is the region near the source in which
the amplitude of reactive power fluctuation is not negligible. The boundary between near
and far fields is defined for convenience to be the point at which the reactive power
fluctuation is 20 dB less than the corresponding active power. At and below this level, the
effects of reactive power fluctuation are considered to be relatively insignificant. The radius
of the near field is then x/lf =0·73 m (lf =0·9632 m is the flexural wavelength calculated
from equation (A24)). That is, points further than 0·73lf from the source are considered
to be in the far field of the source. It should be noted that the transition from near to far
fields is gradual, and a fixed location is chosen here only for convenience.

The definition of the near field can be used to define the near field of the extensional
and torsional waves, because the extensional and torsional wave displacement has similar
far field terms as shown in Appendix A.

5.2.   

In this section it is assumed that an ideal feedforward controller is available. It is also
assumed that it is possible to obtain a measure of the vibratory power transmission along
the cylinder, to be used as the controller error input. An experimental study of active
control of the vibratory power transmission is discussed in reference [14].

The three radial primary actuators are all located at the same distance from the simply
supported end of the cylinder. They are arranged around the circumference of the cylinder
in f co-ordinate locations of 2p/3, (4p/3)×1·05 and 2p. For each primary actuator, there
is a corresponding radial control actuator sharing an identical f co-ordinate location. The
second (primary and control) actuators have been moved slightly from a symmetric
position on the circumference. This is because the matrix that must be inverted in equation
(30) is ill-conditioned if symmetric forces are applied. The primary forces are at
xp =0·025 m and the control forces are at xc − xp =0·05 m. The error sensors are at
xe − xp =0·54 m, at which point the error sensors are close to the far field of the primary
forces. The measurement points are at xmeas − xp =2·07 m. The effect of the locations of
error sensors and control forces will be discussed below. The cost function is the power
transmitted past the error sensors.
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In Table 1 are listed the different wave type power transmission reductions for three
independently driven radial control forces, with the power transmitted by either the
combined or individual wave types used for the cost function. The relative amplitudes and
phases of the three control forces are also shown in the table for each error sensor case.
In the first row of Table 1, ‘‘three waves’’ refers to flexural, extensional and torsional. In
the three rows below, the individual wave types are considered separately.

This table shows that a total power transmission reduction of 30 dB can be achieved
when the power transmitted by all three wave types is used as the cost function. It is
possible to achieve a flexural wave power transmission reduction of 40 dB when only
flexural wave power is used as the cost function, an extensional wave power transmission
reduction is 30 dB when only extensional wave power is used as the cost function and a
torsional wave power transmission reduction of 18 dB when only torsional wave power
is used as the cost function. It can be seen that the reduction of the total power
transmission is the same as that of the extensional wave power.

Comparing the uncontrolled power transmission Pun due to different wave types, it is
found that the major contribution to power transmission is from extensional waves. The
power transmission contribution due to flexural waves is small while for torsional waves
it is negligible. This is because the axial force Nx shown in equation (17) is relatively large
so that extensional wave power transmission Pe is greater than flexural wave power
transmission Pf , even though the amplitude of the displacement of the extensional waves
is smaller than that of the flexural waves.

5.3.     ,   

In the examples discussed so far, the cost function which has been minimized is the
vibratory intensity integrated around the circumference of the cylinder at some axial
location xe . This quantity is referred to as power transmission. Individual intensity
measurements are used to supply the error input to a feedforward controller. However,
vibratory intensity is not easily measured in practice. Thus the purpose of section 5.3 is
to examine the effectiveness of using acceleration, which is more easily measured in
practice, as the cost function. A theoretical comparison will be made of the total power

T 1

Power transmission reduction for three independently driven radial control forces, and for
either a combined or an individual wave type power transmission cost function

fc −fp Pun Pco P.T. reduction
Wave type =Fc =/=Fp = (rad) (W) (W) (dB)

Three waves 0·74 3·11 0·19E−07 0·20E−10 30
combined 0·55 3·13

0·66 3·12

Flexural wave 0·75 3·13 0·50E−09 0·57E−13 40
0·55 3·13
0·67 3·13

Extensional wave 0·74 3·11 0·18E−07 0·19 E−10 30
0·55 3·13
0·66 3·12

Torsional wave 0·71 −3·10 0·71E−10 0·10E−11 18
0·55 3·04
0·64 3·10
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T 2

The effect of different wave type cost functions on total power transmission reduction

Acc. Total P.T. Total
control,* fc −fp P.T. control,* fc −fp P.T.

Wave types =Fc =/=Fp = (rad) reduction (dB) =Fc =/=Fp = (rad) reduction (dB)

Three waves 0·74 3·11 30
combined 0·55 3·13

0·66 3·12

Flexural wave 0·75 3·10 30 0·75 3·13 31
0·56 3·13 0·55 3·13
0·67 3·11 0·67 3·13

Extensional wave 0·73 −3·12 29 0·74 3·11 30
0·55 3·13 0·55 3·13
0·65 −3·13 0·66 3·12

Torsional wave 0·56 3·06 14 0·71 −3·10 23
0·72 3·00 0·55 3·04
0·68 3·06 0·64 3·10

* ‘‘Acc. control’’ refers to acceleration cost function and ‘‘P.T. control’’ refers to power transmission cost
function, corresponding to the wave type shown in the first column.

transmission reduction obtained while using seven alternative cost functions including
different wave type acceleration and different wave type power transmission. The different
wave types include the three individual wave types and, in the case of power transmission,
three waves combined.

The primary and control radial actuator locations are the same as shown above in
section 5.2. For acceleration control of individual wave types, the cost function to be
minimized is the sum of the squares of the wave acceleration amplitudes integrated around
the circumference of the cylinder. In Table 2 are shown the effect of cost function for either
acceleration or power transmission, with different wave types either combined or
individually. Data for the three waves combined acceleration cost function has not been
obtained, partly because of the complexity of calculation and partly because of the
complexity of measurement in practice. The results show that, except for torsional wave
cases, a similar reduction in total power transmission is obtained when the cost function
uses acceleration or power transmission for different wave types. Thus, either flexural or
axial acceleration cost functions can be considered to be alternatives to the total power
transmission cost function. In practice, flexural acceleration as the cost function is
considered to be more easily measured. Therefore, the flexural acceleration cost function
can be used as a suitable alternative to the total power transmission cost function. In the
following analysis, both the flexural wave acceleration cost function and the total power
transmission cost function are included.

In Table 3, four different axial locations are tried for the error sensor locations. The
calculated power transmission reduction corresponding to each axial location of the error
sensors using flexural acceleration as the cost function, is then compared with that found
using total power transmission as the cost function. The total power transmission
reduction is dependent on the error sensor locations for both cost functions. The reduction
increases when the error sensor/control source axial separation xe − xc increases. However,
the reduction does not continue to increases significantly when xe − xc q 0·49 m, at which
point the error sensors are close to the far field of the primary forces. The reduction is
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a constant when xe − xc q 0·69 m at which point the error sensors are in the far field of
the control forces. The reduced reduction in total power transmission when the error
sensors are in the near field of the control forces, i.e., when xe − xc Q 0·69 m, is due to
the fact that the near field reactive power fluctuations affect the ability of the error sensors
properly to observe the power transmission. The results further show that the total
reduction resulting from using the flexural acceleration cost function is approximately the
same as that obtained by using total power transmission as the cost function. This applies
for each of four error sensor locations.

In practice, it is not possible to integrate the vibratory intensity around the
circumference of the cylinder, although it is possible to integrate the flexural acceleration
by using a PVDF film sensor [15]. However, in some instances, the acceleration will be
measured by a number of accelerometers at discrete points. It is of interest to examine the
effect on the maximum achievable reduction in power transmission of deriving the cost
functions by averaging over a fixed number of sensors rather than integrating around the
full circumference of the cylinder.

In Table 4 are shown results that demonstrate the effect of changing within the range
of 3 to 199 the number of error sensors (accelerometers for acceleration and accelerometer
pairs for power transmission [14]), for locations at xe − xc =0·49 m. The error sensors are
spaced in a line around the circumference of the cylinder. Two important results are
obtained. The power transmission reduction is constant for error sensor numbers in the
range of 9 to 199. Also, the power transmission reduction is equal both for the acceleration
cost function and for the total power transmission cost function in the range of 9 to 199.
From this table, it can be seen that only three flexural acceleration error sensors are
necessary, because the results are similar to those obtained when using power transmission
cost function with 199 error sensors. For three and seven error sensors, the reductions
obtained by using power transmission as the cost function are not presented in this table.
This is because the expression for power transmission given by equation (27) is inaccurate
when less than nine power transmission error sensors are used. Use of less than three error
sensors results in an under-determined system, which causes one of the three control forces

T 3

The effect of error sensor type and location on total power transmission reduction

Location, Total Total
xe − xc Acc. control, fc −fp P.T. P.T. control, fc −fp P.T.

(m) =Fc =/=Fp = (rad) reduction (dB) =Fc =/=Fp = (rad) reduction (dB)

0·29 0·71 3·11 25 0·71 −3·11 25
0·54 3·12 0·54 3·13
0·64 3·12 0·64 −3.13

0·49 0·75 3·10 30 0·74 3·11 30
0·56 3·13 0·55 3·13
0·67 3·11 0·66 3·12

0·69 0·77 3·12 31 0·76 3·11 31
0·56 3·14 0·56 3·14
0·68 3·13 0·68 3·13

0·89 0·77 −3·14 31 0·77 3·13 31
0·55 −3·14 0·55 −3·13
0·68 −3·14 0·68 −3·13
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T 4

The effect of number of error sensors in a ring at a single axial location on total power
transmission reduction

No. of Total Total
error Acc. control, fc −fp P.T. P.T. control, fc −fp P.T.

sensors =Fc =/=Fp = (rad) reduction (dB) =Fc =/=Fp = (rad) reduction (dB)

3 0·76 3·10 29 0·74 3·10
0·55 3·13 0·56 3·11
0·67 3·11 0·65 3·10

7 0·75 3·11 29 0·75 3·12
0·56 3·14 0·55 −3·13
0·67 3·11 0·66 3·10

9 0·75 3·10 30 0·74 3·12 30
0·56 3·13 30 0·55 3·11
0·67 3·11 0·66 3·12

19 0·75 3·10 30 0·74 3·11 30
0·56 3·13 0·55 3·13
0·67 3·11 0·66 3·12

39 0·75 3·10 30 0·74 3·11 30
0·56 3·13 0·55 3·12
0·67 3·11 0·66 3·12

199 0·75 3·10 30 0·74 3·11 30
0·56 3·13 0·55 3·12
0·67 3·11 0·66 3·12

to be redundant, and this is not analyzable. As the computer program used for calculations
is only applicable when there is an odd number of error sensors, the results for even
numbers of error sensors are not presented in this table. Note that the error sensors should
not be spaced evenly; otherwise, all of the error sensors might be located at vibrational
nodes for some of the modes.

5.4.       

In the examples discussed so far, the primary and control force types are all radial forces.
In the example in section 5.4, consideration is given to the following alternative primary
and control force types: application of radial forces only; application of axial forces only
or application of circumferential forces only. For each of these cases the primary and
control forces are of the same type, and the cost function to be minimized is the sum of
the squares of the flexural acceleration amplitudes at the error sensors. For each case, two
different control force locations were analyzed, and the primary actuator and error sensor
locations were the same as those used in the earlier analysis outlined in section 5.2. The
results are shown in Table 5. It is concluded that the radial force is more effective than
the axial force and the circumferential force. The results also show that the reduction of
power transmission decreases when the separation distance between the primary and
control actuators increases. A numerical analysis shows that these are true for a range of
separation distance within 0Q xc − xp R 0·2 m. As in practice the minimum achievable
separation will probably be xc − xp r 0·05 m, Table 5 shows that a reduction of 30 dB is
achievable for xc − xp =0·05 m when flexural wave acceleration control and radial forces
are used.
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Note that some of the results for circumferential force Fc/Fp are very large in Table 5,
which shows that the circumferential force is not effective in the control of power
transmission.

As mentioned above, the results in Table 5 refer only to the use of flexural
acceleration as the cost function. Similar analyses for alternative cost functions,
using either flexural, extensional or total power transmission as the cost function,
result in similar conclusions to those presented above. An example is shown in
Table 2.

5.5.   ,   

It is known that measurement of power transmission is easier for flexural waves than
for extensional waves. In section 5.2, it was shown that for the cases considered,
extensional waves produced the major contribution to power transmission. The purpose
of section 5.5 is to examine the effect of cylinder thickness, radius and excitation frequency
on the relative importance of flexural waves to the total power.

In Table 6 is shown the uncontrolled power transmission as a function of the thickness
h. The locations of the primary actuators and the error sensors are the same as shown in
Table 4 and the cost function is flexural acceleration. Radial forces only are used as the
primary forces. The results show that generally the ratio Pf/Ps , of flexural wave power
transmission Pf to the total power transmission Ps , increases as h increases. In Table 7 is
presented the uncontrolled power transmission as a function of the radius r, which shows
a trend of increasing ratio Pf/Ps as r increases. In Table 8 is presented the uncontrolled

T 5

The effect of control force type and location on total power transmission reduction for flexural
acceleration as the cost function

Location, Acc. control, fc −fp Total P.T.
Control force type xc − xp (m) =Fc =/=Fp = (rad) reduction (dB)

Radial 0·05 0·75 3·10 30
0·56 3·13
0·67 3·11

0·20 2·87 0·72 27
3·82 1·82
4·41 1·21

Axial 0·05 0·11 0.81E−2 15
0·34E−2 0·29E+1
0·19E−1 0·25E−1

0·20 0·28E−1 0·49E−1 13
0·14E−1 0·19E−1
0·48E−2 0·64E−1

Circumferential 0·05 0·46 3·12 27
0·46 3·12
0·56E+13 −0·53

0·2 0·92 0·20E+1 0
0·79 0·19E+1
0·49E+15 0·31E+1
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T 6

The effect of cylinder thickness on the ratio of flexural to total power transmission

Thickness, Radius, Frequency, Flexural P.T., Total P.T.,
h (m) r (m) f (Hz) Pf (W) Ps (W) Pf/Ps

0·001 0·5 510 0·2192E−9 0·3773E−6 0·00058097
0·008 0·5 510 0·5646E−9 0·1821E−7 0·03100494
0·010 0·5 510 0·5880E−9 0·1351E−7 0·04352331
0·040 0·5 510 0·3263E−9 0·2643E−8 0·12345819
0·050 1·0 510 0·7737E−8 0·9059E−8 0·85406777
0·060 1·0 510 0·6010E−8 0·6949E−8 0·86487264

T 7

The effect of cylinder radius on the ratio of flexural to total power transmission

Thickness, Radius, Frequency, Flexural P.T., Total P.T.,
h (m) r (m) f (Hz) Pf (W) Ps (W) Pf/Ps

0·003 0·1 510 0·8529E−14 0·4070E−11 0·00209351
0·003 0·3 510 0·1710E−09 0·2772E−07 0·00616883
0·003 0·5 510 0·1213E−08 0·7764E−07 0·01562339

T 8

The effect of excitation frequency on the ratio of flexural to total power transmission

Thickness, Radius, Frequency, Flexural P.T., Total P.T.,
h (m) r (m) f (Hz) Pf (W) Ps (W) Pf/Ps

0·003 0·5 110 0·4168E−10 0·3856E−7 0·00108091
0·003 0·5 210 0·9335E−10 0·5924E−7 0·00157579
0·003 0·5 430 0·2807E−09 0·7732E−7 0·00363036
0·003 0·5 510 0·4032E−09 0·7764E−7 0·00519319
0·003 0·5 610 0·6414E−09 0·7525E−7 0·00852358

power transmission as a function of the excitation frequency f and shows a trend of
increasing ratio Pf/Ps as f increases.

Comparing Tables 6, 7 and 8, it can be seen that cylinder thickness has a
more significant effect on the ratio Pf/Ps than radius or excitation frequency.
However, the assumption in the analysis is that r/hq 16, so there is a limit as to
how much h can be increased without increasing r. It is concluded that a very
large diameter and very thick cylinder is necessary to obtain the flexural waves as
the dominant waves in producing power transmission under the assumption of
r/hq 16. The extensional waves remain the major factor in producing power
transmission for most cylinders of a practical size. It is also concluded that, in
most cases, the extensional wave power transmission gives a good approximation
of the total power transmission. This conclusion provides an opportunity for
simplification of power transmission measurement methods in experimental work
involving error sensors either in or close to the far field of the control sources as is
discussed in reference [14].
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6. CONCLUSIONS

Harmonic power transmission in a semi-infinite cylinder can be reduced significantly by
using an array of independently driven control forces around the circumference of the
cylinder. For three or more radial control forces, it is theoretically possible to achieve a
30 dB reduction in power transmission for both acceleration and power transmission cost
functions, under certain conditions. To achieve this reduction, it is necessary that the error
sensors are either in or close to the flexural wave far field of the primary and control forces.
It is also necessary that the control sources should be very close to primary sources and
that the modelling conditions for the point forces can be achieved in practice. For the test
cylinder, only three flexural acceleration error sensors are necessary if the error sensors
are in the far field of the primary and control forces. It is concluded that, in general, a
radial control force is more effective than an axial force or a circumferential force in
controlling total power transmission. It is also suggested that use of either the flexural or
the axial acceleration cost function can be an alternative to the total power transmission
cost function.

It is interesting to note that one type of cost function (flexural or axial acceleration) can
be effective on its own. This is because the flexural, extensional and torsional waves in
cylinders are strongly coupled.

The study has also indicated that, in most cases, the extensional wave power
transmission gives a good approximation of the total power transmission. This finding
provides an opportunity for simplification of total power transmission measurement
methods in experimental work.
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APPENDIX A: THE RESPONSE OF A SEMI-INFINITE CYLINDER TO A LINE OF POINT
FORCES DRIVEN IN PHASE

The extension of the classical equations of motion for a cylinder given by Flügge [5],
with cylinder inertia included, is

u0+
1− n

2
u··+

1+ n

2
v'·+ nw'

+ j$1− n

2
u··−w1+

1− n

2
w'··%− g2 12u

1t2 =−g2 Fx

rh
, (A1)

1+ n

2
u'·+ v··+

1− n

2
v0+w·+ j$3(1− n)

2
v0−

3− n

2
w0·%− g2 12v

1t2 =−g2 Ff

rh
(A2)

and

nu'+ v·+w+ j$1− n

2
u'··− u1−

3− n

2
v0·

+wIV +2w0··+w····+2w··+w%+ g2 12w
1t2 = g2 Fr

rh
, (A3)

where the quantities u=(x, f, t), v= v(x, f, t) and w=w(x, f, t) are the displacements
in the axial, circumferential and radial directions respectively, and Fx , Ff and Fr are
the applied forces per unit surface area in each direction. The derivatives with
respect to the dimensionless co-ordinates x/r and f will be indicated by primes and
dots:

r
1( )
1x

=( )',
1( )
1f

=( )··

The geometry of the cylinder and co-ordinates are shown in Figure 1 and the sign
conventions are shown in Figure 2. The cylinder is simply supported at x=0 and is infinite
at the other end.

As the cylinder is closed, the following harmonic series solutions in f can be assumed
for cylinder vibrational displacement in the axial, circumferential and radial directions
(developed by Flügge [5], also later used by Brevart and Fuller [19]):
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u(x, f, t)= s
a

n=1

un(x) cos nf ejvt, (A4)

v(x, f, t)= s
a

n=1

vn(x) sin nf ejvt (A5)

and

w(x, f, t)= s
a

n=1

wn(x) cos nf ejvt, (A6)

where n is the circumferential mode number. Each of the eigenfunctions un(x), vn(x) and
wn(x) can be expressed in terms of the modal wavenumbers ksn as follows [7]:

un(x)= s
8

s=1

asnAsn eksnx/r, vn(x)= s
8

s=1

bsnAsn eksnx/r (A7, A8#

and

wn(x)= s
8

s=1

Asn eksnx/r, (A9)

where Asn , asn and bsn are arbitrary constants. Equations (A7), (A8) and (A9) show that
the eigenfunctions depend on the circumferential mode only. This is because in the
semi-infinite cylinder there is no axial mode and the circumferential modes are the only
modes available. It will be explained below that, for a single circumferential mode, there
are eight eigenvalues (i.e., wavenumbers ksn , s=1, 2, . . . , 8).

A.1.      a  b

For each mode, the homogeneous form of equations (A1), (A2) and (A3) must be
satisfied. To find the modal wavenumbers, we take the general term of equations (A4), (A5)
and (A6), put u= un(x) cos nf, v= vn(x) sin nf, w=wn(x) cos nf, and introduce this into
the homogeneous form of equations (A1), (A2) and (A3). All the terms in each equation
have a common factor sin nf or cos nf, which cancels to give

u0n −
1− n

2
n2un +

1+ n

2
nv'n + nw'n − j$1− n

2
n2un +w1n +

1− n

2
n2w'n%+vg2un =0,

(A10)

−
1+ n

2
nu'n − n2vn +

1− n

2
v0n − nwn + j$3(1− n)

2
v0n +

3− n

2
nw0n %+v2g2vn =0 (A11)

and

nu'n + nvn +wn + j

$−1− n

2
n2u'n − u1n −

3− n

2
nv0n +wIV

n −2n2w0n + n4wn −2n2wn +wn%−vg2wn =0. (A12)
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Equations (A10), (A11) and (A12) have constant coefficients and may be solved by
exponential functions:

un =An eksnx/r, vn =Bn eksnx/r and wn =Cn eksnx/r.

After introducing this into equations (A10), (A11) and (A12), we may drop the exponential
factor and then have three ordinary linear equations for the constants An , Bn and Cn .

$k2
sn −

1− n

2
n2(1+ j)+v2g2%An +

1+ n

2
ksnnBn +$nksn − j0k3

sn +
1− n

2
ksnn21%Cn =0,

(A13)

1+ n

2
ksnnAn +$−1− n

2
k2

sn + n2 −
3(1− n)

2
jk2

sn +v2g2%Bn +$n−
3− n

2
jk2

snn%Cn =0

(A14)

and

$nksn − j0k3
sn +

1− n

2
ksnn21%An +$n−

3− n

2
jk2

snn%Bn

+[1+ j(k4
sn −2k2

snn2 + n4 −2n2 +1)−v2g2]Cn =0. (A15)

Since these equations are homogeneous, they can have a solution An , Bn and Cn different
from zero only if the determinant formed from their nine coefficients vanishes. This
condition can be used to determine ksn . In general, the solution will usually have the form
[7]

k1n =−a, k2n =−jb, k3n =−(c+jd), k4n =−(c−jd),

k5n =+a, k6n =+jb, k7n =+(c+jd), k8n =+(c−jd)

where a, b, c and d are real quantities. The above wavenumber equations show that, for
a single circumferential mode, there are eight wavenumbers. This is because the
wavenumbers consist of near and far field terms in two opposite directions (k1n , k2n , k5n and
k6n) and the terms resulting from torsional motion (k3n , k4n , k7n and k8n). These
wavenumbers are different to the form of the solutions given by Flügge [5], because the
inertia terms have been included here.

The constant an and bn (n=1, . . . , a) can now be found from any two of equations
(A13), (A14) and (A15). Using the definition of An = anCn and Bn = bnCn (n=1, . . . , a),
the complex numbers an and bn can be determined by assuming Cn =1 (n=1, . . . , a) in
equations (A13), (A14) and (A15).

On each side of an applied force at x= x0, each eigenfunction is a different linear
combination of the terms eksnx/r. For xQ x0,

u1n(x)= s
8

s=1

asnA1sn eksrx/r, v1n(x)= s
8

s=1

bsnA1sn eksnx/r, (A16, A17)
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and
w1n(x)= s

8

s=1

A1sn eksnx/r. (A18)

For xq x0,

u2n(x)= s
4

s=1

asnA2sn eksnx/r, v2n(x)= s
4

s=1

bsnA2sn eksnx/r (A19, A20)

and

w2n(x)= s
4

s=1

A2sn eksnx/r. (A21)

Note that in equations (A19), (A20) and (A21), A25n to A28n have been omitted because,
for a semi-infinite cylinder, there is no boundary to produce reflected waves with a negative
horizontal velocity component.

A2.    

The flexural wavelength can be obtained from the homogeneous form of equation (A3).
The flexural wavelength can be obtained by dividing both sides of the homogeneous
form of equation (A.3) by j, and using the definitions of j and g2 (see list of symbols) to
obtain

1
j

(nu'+ v·+w)+

$1− n

2
u'··− u1−

3− n

2
v0·+wIV +2w0··+w····+2w··+w%

−
v4

v2Eh2/[12r(1− n2)r4]
w=0. (A22)

Following a similar procedure to that used for the calculation of the flexural
wavelength in a flat plate, the coefficient of the last term in equation (A22) may be
expressed as

v4

v2Eh2/[12r(1− n2)r4]
= k4

f . (A23)

Equation (A23) can also be written as

kf =v/cf =2p/lf (A24)

and

cf =0X v2Eh2

12r(1− n2)r41
1/4

, (A25)

which is the expression for the frequency dependent flexural wave speed in the cylinder.
Note that the flexural wave speed is the ratio of the flexural wave speed in a flat plate of
thickness equal to that of the cylinder, to the radius of the cylinder.



.   . . 430

A.3.    

The four boundary conditions corresponding to a simple support are u=0, v=0, w=0
and Mx =0 given by Leissa [6], where Mx was given by Flügge [5]:

Mx =(K/r2)(w0+ nw··− u'− nv·). (A26)

In terms of the displacement unknowns, these boundary conditions for a simply
supported end at x=0 are

s
8

s=1

asnA1sn =0, s
8

s=1

bsnA1sn =0, s
8

s=1

A1sn =0 (A27–A29)

and

s
8

s=1

(k2
sn − nn2 − asnksn − nnbsn)A1sn =0. (A30)

A.4.         

Requiring that the displacement and its gradient in each direction be continuous at any
point in the cylinder wall, the first six equilibrium conditions at x= x0 which must be
satisfied are

u1n = u2n , u'1n = u'2n , v1n = v2n , v'1n = v'2n , w1n =w2n , w'1n =w'2n . (A31–A36)

The form of the excitation F will affect the higher order equilibrum conditions at
x= x0.

The displacement response of the cylinder to an array of m equally spaced radial point
forces around a circumference of the cylinder at positions ((x0, fi), i=1, . . . , m) is
considered. The radial force Fr in equation (A3) is assumed to be driven in-phase and with
the same complex amplitude F0 so that

Fr =F0 s
m

i=1

d(x− x0)d(f−fi) ejvt. (A37)

Replacing u, v and w by equations (A4)–(A6), dividing by ejvt, multiplying by cos nf and
taking integral from −p to p with respect to f, equation (A3) can be written as

nu'n (x)+ nvn(x)+wn(x)+ j$−1− n

2
n2u'n (x)− u1n (x)−

3− n

2
mv0n (x)

+wIV
n (x)−2m2w0n (x)+m4wn(x)−2m2wn(x)+wn(x)%− g2v2wn(x)

=
g2F0d(x− x0)

prh
s
m

i=1

cos fi . (A38)
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Then taking the integral from x0 − d to x0 + d with respect to x in this equation, using
the conditions

g
x0 + d

x0 − d

wn(x) dx:0, g
x0 + d

x0 − d

w'n (x) dx:0 (A39, A40)

(similarly for un(x), vn(x), u'n (x) and v'n (x)) and

g
x0 + d

x0 − d

w0n (x) dx:0 (A41)

as d:0, we obtain

−g
x0 + d

x0 − d

u1n (x) dx+g
x0 + d

x0 − d

wIV
n (x) dx=

F0g
2

prhj
s
m

i=1

cos fi g
x0 + d

x0 − d

d(x− x0) dx (A42)

or

u01n(x0)− u02n(x0)+w12n (x0)−w11n (x0)=
F0g

2

prhj
s
m

i=1

cos fi . (A43)

Finally, taking the integral from x0 − d to x0 + d with respect to x in equation (A43), we
obtain

w01n(x0)=w02n(x0). (A44)

A.5.    

For a semi-infinite cylinder with the end at x=0 modelled as simply supported,
equations (A27)–(A36), (A44) and (A43) can be written as a 12×12 matrix equation. We
use the definition of Mi = k2

in − vn2 − ainkin − vnnbin (i=1, . . . , 8) in equation (A30).
Substituting equations (A7), (A8) and (A9) into equation (A43), in terms of the eigenvector
unknowns, the coefficients in equation (A43) can be written as Fi = aink2

in ekinx0 − k3
in ekinx0

(i=1 , . . . , 8) and Fi = k3
(i−8)n ek(i−8)nx0 − a(i−8)n k2

(i−8)n ek(i−8)n x0 (i=9 , . . . , 12). The 12×12
matrix equation can be written as:
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which can be written as [a][X]= [F]. For each value of n, the solution [X] of the 12×12
system of equations is an eigenvector which describes modal shapes and amplitudes
corresponding to the three different wave types (flexural, axial and circumferential).

The cylinder displacement at any location (x, f) due to a line of in-phase radial point
forces is

u=F0 u0− f , v=F0 v0− f , w=F0 w0− f , (A46–A48)

where u0− f , v0− f and v0− f are the displacements to unit radial force excitation which are
obtained by solving equation (A45) and substituting the results for A1sn (s=1, . . . , 8) and
A2sn (s=1, 2, 3, 4) into equations (A16)–(A21) and (A4)–(A6). Similarly, the displacement
responses due to unit axial force excitation or circumferential force excitation can be
obtained by using equation (A1) or (A2) correspondingly.

APPENDIX B: LIST OF SYMBOLS

cf flexural wave speed
De =Eh/(1− n2), extensional rigidity
E Young’s modulus
f excitation frequency
F point force
Fc control point force
F0 complex point force amplitude
Fp primary point force
Fr radial force per unit surface area
Fx axial force per unit surface area
Ff circumferential force per unit surface area
h cylinder shell thickness
j =z−1, complex unit
K =Eh3/[12(1− n2)], bending stiffness
kf =v{v2Eh2/[12r(1− n2)r4]}−1/4, flexural wavenumber
ksn modal wavenumbers for nth circumferential mode
m number of forces
Mx moment about the f-axis
n number of circumferential modes
Nx axial force
Nxf circumferential shear force
Pco controlled power transmission
Pe extensional wave power transmission
Pf flexural wave power transmission
Ps total power transmission
Pt torsional wave power transmission
Pun uncontrolled power transmission
Pxa active power transmission
P.T. power transmission
Qx transverse shear
r cylinder mean radius
t time
T period of vibration
u axial displacement
v circumferential displacement
xc control force location
xe error sensor location
xp primary force location
w flexural displacement
wc− f flexural response due to unit control force excitation
wp− f flexural response due to unit primary force excitation
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a eigenroot coefficient
b eigenroot coefficient
g2 =[rr2(1− n2)]/E
ux angular rotation about the f-axis
lf flexural wavelength
n Poisson ratio
j = h2/12r2

r mass density
f circumferential co-ordinate
fc phase of control force
fp phase of primary force
v angular frequency of vibration

Superscripts
H complex conjugate and transpose of a matrix
T transpose of a matrix
· derivative with respect to f
' derivative with respect to the dimensionless co-ordinate x/r,
* complex conjugate

Subscripts
c control force only
p primary force only


